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Developmental plasticity is ubiquitous in natural populations, but the
underlying causes and fitness consequences are poorly understood. For con-
sumers, nutritional variation of juvenile diets is probably associated with
plasticity in developmental rates, but little is known about how diet quality
can affect phenotypic trajectories in ways that might influence survival to
maturity and lifetime reproductive output. Here, we tested how the diet
quality of a freshwater detritivorous isopod (Asellus aquaticus), in terms of
elemental ratios of diet (i.e. carbon : nitrogen : phosphorus; C : N : P), can
affect (i) developmental rates of body size and pigmentation and (ii)
variation in juvenile survival. We reared 1047 individuals, in a full-sib
split-family design (29 families), on either a high- (low C : P, C : N) or low-
quality (high C : P, C : N) diet, and quantified developmental trajectories of
body size and pigmentation for every individual over 12 weeks. Our diet
contrast caused strong divergence in the developmental rates of pigmenta-
tion but not growth, culminating in a distribution of adult pigmentation
spanning the broad range of phenotypes observed both within and among
natural populations. Under low-quality diet, we found highest survival at
intermediate growth and pigmentation rates. By contrast, survival under
high-quality diet survival increased continuously with pigmentation rate,
with longest lifespans at intermediate growth rates and high pigmentation
rates. Building on previous work which suggests that visual predation med-
iates the evolution of cryptic pigmentation in A. aquaticus, our study shows
how diet quality and composition can generate substantial phenotypic vari-
ation by affecting rates of growth and pigmentation during development in
the absence of predation.
1. Introduction
Developmental plasticity, when the phenotypic expression of genotypes depends
on the environmental conditions during development, is ubiquitous in animals
[1–3]. There are several mechanisms by which environmental conditions can
affect the phenotypic trajectories of individual juveniles [4,5], and several ways
in which such developmental plasticity can affect fitness variation: for example,
juveniles can experience physiological trade-offs that manifest in lowered per-
formance, such as reduced locomotion [6,7] or maintenance of basic body
functions [8], that might ultimately increase mortality prior to adulthood [1,9].
Over an individual’s lifetime, the environmental dependence of phenotypic
expression can weaken (e.g. irreversible developmental plasticity), and, in
some cases, can culminate in adult phenotypes that are maladaptive. Cryptic
coloration, for example, is often determined during early developmental
environments in response to potentially imperfect environmental cues about
predation risk in adult environments [10,11]. Despite the ubiquity of develop-
mental plasticity, surprisingly little is known about the ecological factors
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affecting divergence in developmental trajectories and the
consequences of these trajectories for fitness variation.

The dietary quality of resources throughout juvenile
development is probably an important cause of developmental
plasticity, because of its potentially large effects on the
expression of morphological, physiological and behavioural
traits of adults [12,13]. Across their lifetimes, organisms need
to balance the allocation of acquired resources for growth,
maintenance and reproduction [1,2,14]. Especially during
early life, when investments in somatic growth are high
[15,16], developmental trajectories might be more susceptible
to variation in both resource quantity and quality [17,18].
The stoichiometric composition of essential elements (carbon,
nitrogen and phosphorus) varies broadly among primary
producers within and across ecosystems [19], and is a useful
proxy of variation in diet quality of consumers [20]. Substantial
mismatches between consumers and their diets are common
[21–23], and if they occur early in development, they might
be an important ecological cause of plasticity [6,10,24] and of
fitness variation [25].

The effects of diet variation on developmental trajectories
are likely to have important fitness consequences for consumers
in general [3,26], and for detritivores in particular [27]. Dietary-
based developmental plasticity can vary from maladaptive to
adaptive depending on the specific ecological context [3,28].
For example, high-quality diets that are available during juven-
ile development may allow organisms to reduce predation risk
(e.g. byoutgrowingvulnerable stages or sizes [6],maturing ear-
lier [29] or expressing adult phenotypes that increase mating
success [30]). For detritivores, who have adapted in various
ways to low-quality food throughout their lifetime [31], we
might expect nutrition to be an important source of individual
variation in both developmental trajectories and fitness in
natural populations [32]. However, few studies (either of detri-
tivores or other consumers) have quantified how the link
between fitness variation and developmental trajectories of
individuals depends on the nutritional quality of diets.

The detritivorous freshwater isopod Asellus aquaticus is a
useful model to explore how dietary variation can affect phe-
notypic variation throughout juvenile development. Previous
work in Swedish lakes has shown habitat-specificity of adult
isopod pigmentation and body size [33,34]. The matching of
body pigmentation with habitat backgrounds has been pri-
marily interpreted in the context of the evolution of crypsis
in response to visual predation [33–35]. However, A. aquaticus
also exhibits diet-based plasticity in terms of both growth
rate [36] and accumulation rates of pigmentation through
development [27]. At birth, isopods completely lack pigmen-
tation and become increasingly pigmented as they grow [27].
The development of pigmentation of A. aquaticus is cumulat-
ive and irreversible through development [37], and may be
linked to environmental sources of tryptophan, an amino
acid that is a metabolic precursor for the pigment xanthom-
matin [38,39]. Tryptophan varies strongly among detrital
resources of A. aquaticus [40], but neither the effects of tryp-
tophan nor the dietary quality of resources has been
investigated in the context of survival variation of A. aquaticus
through development.

Here, building on our previous work [27], we perform a
large laboratory experiment to test how varying dietary
environments affect developmental trajectories of juveniles,
and investigate the joint effects of diet and divergent develop-
mental trajectories for juvenile fitness. Using the freshwater
isopod A. aquaticus, we manipulated stoichiometric ratios
and availability of pigmentation precursors (i.e. tryptophan)
and tracked individual growth and pigmentation rates, as
well as survival, of over 1000 individuals from 29 families.
Specifically, our rearing experiment allowed us to investigate
(i) the extent of developmental plasticity in growth and pig-
mentation caused by our diet manipulations, and (ii) how
such variation in developmental rates of growth and pigmen-
tation can jointly affect the survival of juveniles, in the absence
of predators or their cues [27,33]. Based on previous work
regarding the physiological mechanisms of isopod develop-
ment [27,36,38], we expected to find higher pigmentation
rates under a high-quality (= high-protein) diet. Moreover,
we anticipated associations between developmental rates of
growth and pigmentation, partly because high-quality diets
often covary with pigmentation precursors—a covariation
that we attempted to disentangle with our manipulation of
tryptophan. Our results confirm pronounced developmen-
tal plasticity in pigmentation, and, to a lesser degree, in
growth rates, and underscore the need to consider diet- or
resource-based developmental plasticity as an important
source of phenotypic variation, which may affect fitness
before reproduction or selection from predation later in life.
2. Material and methods
(a) Asellus aquaticus
The freshwater isopod A. aquaticus is common in benthic commu-
nities across Europe and parts of Asia [41]. The small crustaceans
(mature animals are 4–15 mm; figure 1) are found in many differ-
ent microhabitats, like beds of Chara tomentosa, Phragmites australis
(reed) or bare sand [33,34,36], and are considered to play a signifi-
cant role in freshwater food webs [33,36,41]. While A. aquaticus
can feed on fresh plant material, they often prefer substrates
colonized with microbiota (i.e. bacteria and fungi; figure 1d ) on
leaf litter or decaying macrophytes [36,42–44]. Feeding on
fungal and microbial biofilms may help alleviate stoichiometric
mismatches between A. aquaticus and their nutritionally poor
detritial diets [36,43]. Moreover, the amino acid tryptophan,
which is essential for the main pigment in A. aquaticus, is known
to vary strongly across various detrital resources [40], but
neither the effects of tryptophan or nutrition have been investi-
gated in the context of isopod life history and development.
Here, wemanipulate both diet quality and tryptophan availability
to explore the link between variation in developmental trajectories
and juvenile survival.

(b) Common garden experiment
(i) Contrasts and food preparation
Using a common garden experiment, we quantified the extent of
variation in developmental rates of growth and pigmentation,
and their effects on survival inA. aquaticus in response to diet com-
position (stoichiometric quality and tryptophan availability). To
do so, we exposed 1047 juvenile isopods from 29 families shortly
after their birth (1–3 days) to four different dietary contrasts: high
elemental ratios (C : P and C : N, hereafter low-quality (LQ) diet)
and low elemental ratios (hereafter high-quality diet (HQ)), as
well as each of these diet combinations crossed with a supplement
(or not) of tryptophan. We measured growth, pigmentation and
survival of each individual over the course of 12 weeks. For
each family, half of the juveniles were randomly assigned to
either low or high diet quality (full-sib/split-family design). For
the eight families with the highest number of offspring (50–60
juveniles), we crossed the diet quality treatment with a
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Figure 1. Phenotypic variation in pigmentation in the freshwater isopod A. aquaticus can be determined by diet. (a) Random sample of isopods taken from beds of
Chara tomentosa in Lake Lucerne at Kastanienbaum (measured with a flatbed scanner, brightness adjusted to match images from camera stand; size scale is for a–c).
(b,c) Example of an isopod reared under (b) low-quality and (c) high-quality diet (both no tryptophan, photographed with a camera stand). The levels of adult isopod
pigmentation measured throughout the diet manipulation fall well within the range of isopod pigmentation found in nature (figure 2d ) [27]. (d ) Isopods feeding on
fungi that form on the surface of alder leaves in standing water. (e) Elemental composition of various natural food items that isopods encounter in Lake Lucerne, as well
as the artificial diets used in this experiment (LQ, low quality/high elemental ratio; HQ, high quality/low elemental ratio;−T, without tryptophan supplement; +T, with
tryptophan supplement). This panel also shows the elemental composition of isopods collected from Lake Lucerne (black diamond). Elemental ratios are scaled by the
molar mass of the respective elements. The data for the figure can be found in electronic supplementary material, table S1. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20203136

3

supplemental tryptophan treatment: in these eight families, 40
juveniles were randomly distributed among high- and low-qual-
ity treatments, and the remaining 10–20 individuals among the
two treatments with tryptophan supplement. For the high-quality
diet, we used 80% dry yeast (Saccharomyces cerevisiae) and 20%
potato starch that was autoclaved together with agar and filtered
lake water into a paste that was dried and cut into pellets (dry
weight 1.2 ± 0.1 g). The low-quality diet was prepared in the
sameway, but with 20% yeast and 80% starch. For the tryptophan
supplement, we added 0.1 g of tryptophan per 1 g of food sub-
strate. We constructed these diets so as to capture some of the
broad range of stoichiometric variation that isopods encounter
in nature, from high-quality macrophyte detritus to low-quality
terrestrial detritus (figure 1). Our tryptophan manipulation unin-
tentionally lowered the C : P of this diet treatment (figure 1e), but
this effect was small relative to the overall diet contrast.
(ii) Experimental set-up and procedure
We used juvenile isopods from a total of 29 successful matings
(for details on isopod collection and breeding, see electronic
supplementary material) and started the common garden exper-
iment in three temporal blocks. From each family, juvenile
isopods were randomly distributed across jars (50 ml, PE),
which contained filtered lake water and a pellet of either of the
diet types. We placed the jars inside racks that were arranged
randomly inside a flow-through water trough to buffer against
fluctuations in temperature. The set-up was maintained at 20°C
with a 16 : 8 h light dark cycle, and temperature was controlled
every day. We took pictures of all live isopods from each block
every three weeks. Using small pipettes (for isopods bigger
than approx. 5 mm, we used soft steel forceps), we transferred
an individual from its tube into a small container with lake
water, and from there onto a flat tray containing lake water
underneath a camera mounted on a camera stand. After taking
the picture, we transferred each isopod into a new (autoclaved)
tube with fresh lake water and a new food pellet. We repeated
this procedure with every individual, yielding up to five
phenotypic measurements for each developmental trajectory.
(iii) Isopod pictures and phenotyping
We took pictures of isopods using a camera stand with a digital
single lens reflex camera (Canon) and a 100 mm macro lens
(Tamron). The tray was uniformly illuminated with an LED spot
ring (Leica). We ensured that each isopod specimen was flat on
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the tray, without movement or curling up. To quantify pigmenta-
tion and body size of isopods from the digital images, we applied
computer vision techniques. For this purpose, we used the python
package phenopype [45]. It uses thresholding algorithms to seg-
ment isopods from the image background, to then extract the
phenotypic information from the pixels marking the animal
(dorsal region of isopod torso = carapace, excluding legs and
antennae). The greyscale values from these pixels were averaged
and converted to a pigmentation scale from 0 (greyscale value
of 255) to 1 (greyscale value of 0). Body size was measured as car-
apace length, excluding legs and antennae. Previous work has
confirmed that phenopype results are highly correlated with
measurements of the same images using ImageJ (linear correlation
between methods: slope = 0.98, R2 = 0.97 [27]).

(c) Statistical analyses
(i) Common garden experiment
We tested for effects of diet composition and tryptophan supple-
ment on developmental rates of body size and pigmentation, as
well as survival over the course of the experiment using a series
of generalized additive mixed models (GAM), using the ‘gamm’
function in mgcv [46]. We fitted separate models each for body
size (GAM1; table 1) and pigmentation (log transformed,
GAM2), with time separated by diet contrast as the fixed effect
and a thin plate spline term with time in weeks. Furthermore,
we fit a GAM with a binomial distribution family to test for
differences in survival as a binary dependent variable, and
fixed effect and spline terms identical to the developmental
rate models (GAM3; table 1). All three models contained
nested random terms for family and individual, and used diet
as a parametric component in the spline terms.

In a further step, we tested for effects of diet composition
and of juvenile phenotypes right after birth on growth and pig-
mentation rates and survival by performing a path analysis
using Bayesian multilevel modelling [47]. In a single model, we
implemented three hierarchical levels, and included family as
the grouping term, allowing us to estimate relative effect sizes
of developmental rates and starting conditions on lifespan
under all diet treatment contrasts (see electronic supplementary
material, table S2 for details). We applied both types of analysis
in a complementary fashion: with separate additive models, we
accounted for the nonlinearity in developmental rates, and
with the path analysis, we were able to disentangle complex
interactions linking rearing conditions and juvenile traits through
development with survival variation.

To test for interactions between growth and pigmentation on
survival, we also applied a more complex multivariate GAM. To
do so, we first converted measurements of body size and pigmen-
tation up until week 6 (dashed line in figure 2) to a single linear
slope per individual isopod (hereafter growth and pigmentation
rate, respectively). We chose to calculate slopes from this time
frame, because pigmentation and growth increased linearly to
this point, and isopod survival up to this point was high. We
then implemented an additive model (GAM4) with the ‘gam’
function from mgcv, using lifespan (in weeks) as the dependent
variable, single thin plate spline terms for growth and pigmenta-
tion rate, and a tensor smooth product term to test for the
interaction (table 1). The model included family as a random
effect, and the spline and tensor term included diet as a parametric
component (see electronic supplementary material, for details).
3. Results
We found that growth rates were only weakly affected by
diet quality and tryptophan supplement (GAM 1; table 1
and figures 2 and 3), whereas rates of pigmentation were
strongly affected by diet quality. Tryptophan only resulted
in significantly higher pigmentation rates under low-quality
diet (significant interaction diet quality × tryptophan; table 1
and figures 2 and 3). As indicated by the path analysis
(figure 3) and GAM2 (table 1 and figure 2), pigmentation
rates were lowest when juveniles were reared under low-
quality diet and in the absence of the tryptophan supplement.
On the other hand, the tryptophan supplement resulted in
slightly higher pigmentation rates under low-quality diet,
but not under high-quality diet. This was indicated by a sig-
nificant interactive effect of diet and tryptophan in GAM2
(table 1 and figure 2) and in the path analysis (figure 3). Over-
all, and despite the presence of significant variation at the
family level for growth and pigmentation rates (see random
effect of family in table 1; electronic supplementary material,
figure S2), the diet contrast resulted in clear divergence in
the build-up of pigmentation through development
(figure 2b). For a given body size, these diet-induced differ-
ences in pigmentation are comparable in magnitude to the
observed habitat-specific variation in nature (figure 2d ).

Multiple lines of analysis indicate that there were complex
interactions between diet quality and developmental rates
that affected survival of isopods. We found that survival of
juvenile isopods during the experiment depended strongly on
both diet and tryptophan supplement: survival was much
higher on low-quality diets, and further increased by the
tryptophan supplement. However, under a high-quality diet,
the tryptophan supplement did not affect survival (GAM3;
table 1 and figure 3). Using the path analysis, we found that
higher concurrent rates of growth and pigmentation also had
a negative impact on survival independent of diet, as indicated
by the interaction term (figure 3d). For amore in-depth analysis
of the full three-way interaction of diet, growth rate and pig-
mentation rate, we used a multivariate additive framework,
wherewe tested diet-specific relationships between both devel-
opmental rates (GAM4; figure 4 and table 1). This analysis
revealed two distinct ‘survival surfaces’: under low-quality
diet, a single, high survival peak existed at intermediate
growth and pigmentation rates. Survival under high quality
was overall lower and varied nonlinearly across a wide range
of both developmental rates (figure 4), as indicated by a signifi-
cant nonlinear interaction of diet and rates (table 1). Specifically,
survival on high-quality diet peaked at intermediate growth
rates and high rates of pigmentation (figure 4).
4. Discussion
Our experiment confirms and expands the results of a pre-
vious study [27] that found diet-based developmental
plasticity in pigmentation, and weak diet-based plasticity in
growth in A. aquaticus. In the current paper, we found that
growth of juvenile isopods was only weakly affected by our
manipulation of diet stoichiometry and the tryptophan sup-
plement (figures 2a and 3a and table 1). The growth rates
we measured are comparable to previous rearing exper-
iments that used naturally occurring food items [36],
confirming that the caloric content and nutritional balance
of the pellets that we provided ad libitum were an appropri-
ate rearing environment. Maintaining high growth rates on
low-quality food might be an important mechanism in natu-
ral habitats to escape (outgrow) gape limited predators (e.g.
juvenile fish) or have a higher chance of escaping slow
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moving invertebrate predators (e.g. odonate larvae) when
they are larger [35]. Although our diet contrast spanned
beyond the range of natural food items that we measured
in our study population (figure 1), our treatments with
high stoichiometric mismatch (i.e. high C : P/C : N) was
sufficient near natural growth [36] and pigmentation rates [27].

Pigmentation rates were strongly affected by our manipu-
lation of diet stoichiometry (figures 2b and 3b and table 1):
when reared under high-quality diet (low C : P, C : N) juvenile
isopods from a majority of families (22 out of 29, electronic
supplementary material, figure S2) showed greatly increased
rates of pigmentation, and also higher final levels pigmenta-
tion at the end of the experiment. This is in agreement with a
previous study [27] and provides additional support for plas-
ticity of pigmentation during juvenile development, which
is irreversible for adult isopods [33]. Indeed, our dietary
manipulations recapitulated the entire phenotypic range of
pigmentation for a given body size in the Lake Lucerne popu-
lation (see figures 1a–c and 2d) [27]. While variation among
families in the extent of phenotypic divergence probably
results from a mixture of genetic and environmental factors,
our experimental design can neither quantify additive genetic
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variance of plasticity nor test for transgenerational plasticity
(e.g. paternal effects). Even so, the high reproducibility of
phenotypic divergence within families exposed to contrasting
diets provides strong evidence for diet-based developmental
plasticity in our study population.

Our supplement of tryptophan to both high- and low-
quality diets showed small, but significant positive effects on
pigmentation rates, but only for isopods reared on low-quality
diet (figure 3b and table 1). It is well known that the addition
of tryptophan to diets can increase pigmentation in insects.
For example, larvae of cabbage butterflies (Pieris brassicae)
reared on tryptophan-limited artificial foods have reduced
wing pigmentation compared to larvae reared on tryptophan-
rich foods [48]. Typically, organisms acquire tryptophan from
protein-rich diets [49], and the yeast we used to create the
high-quality diet (i.e. S. cerevisiae) is known to contain trypto-
phan [50]. Therefore, the faster development of pigmentation
we observed in the low C : P diet could be partly explained by
higher levels of tryptophan originating from yeast.

A general result from our experiment was that juvenile
survival depended strongly on the developmental rates of
both growth and pigmentation, albeit in complex ways.
Both the significant interaction in the path analysis (figure 3d )
and the multivariate additive model (figure 4) suggest that
fast-growing individuals had a lower likelihood of survival
when they also had high rates of pigmentation (figure 3d ).
Previous work has suggested that elevated growth rates
in A. aquaticus are associated with higher energy expendi-
ture, and consequently, higher metabolism and resource
requirements [51], which may explain why fast-growing indi-
viduals have higher mortality rates. Elevated dietary protein
content has also been shown to reduce survival in other study
systems [52,53], which is thought to be caused by energetic
expenditure associated with protein digestion and potentially
harmful breakdown products [37,49]. Moreover, it is possible
that a specific composition of the gut microbial community is
required to digest certain proteins [54]. Still, only surprisingly
little is known about the direct effects of protein consumption
for aquatic isopods and particularly A. aquaticus, given that
many detrital food items may contain high amounts of
protein (figure 1).

Decreased survival under high developmental rates may
also be due to resource competition antagonisms within the
developing organism [15], namely if isopods experience
physiological costs of maintaining high rates of both
growth and pigmentation [13,17,18]. The relative consistency
of growth rates across all treatment combinations suggests
that the development of body size is more conserved than
pigmentation [27]. Indeed, somatic growth, the correlated
development of thoracic and other tissues during early onto-
geny and before reaching maximum body size, is one main
dimension of resource allocation in animals, followed by
physiological maintenance and reproduction [1,9,55]. How-
ever, depending on the resources available during early
ontogeny, development of secondary characteristics like
ornaments, weapons or pigmentation can vary in compari-
son to body size, due to the necessity to develop fully
sized body parts and organs to ensure their functionality
[56,57]. It is possible that during early ontogeny of A. aqua-
ticus, resource allocation to growth is prioritized over the
development of isopod pigmentation when stoichiometric
mismatches between consumers and their diet are high
[15,19,25].
Our experiment provided evidence for nonlinear inter-
actions between diet quality and developmental rates that
strongly affected juvenile survival. Specifically, under a low-
quality diet (high C : P, C : N), survival was constrained
around a single peak centred at intermediate growth and
pigmentation rates. By comparison, under a high-quality diet
(low C : P, C : N), high survival was observed over a broader
range of growth and pigmentation rates, albeit with a
tendency for high survival at intermediate growth rates.
Previous work on other organisms has also observed broader
survival landscapes on high versus low-quality food
[13,16,53]. However, this was not the case in our study (figure 4
inset): high-fitness under low-quality diet was constrained to a
single peak of moderate growth and pigmentation rates,
whereas high-quality diet did not show a distinct high-fitness
peak. This could either be due to the aforementioned negative
consequences of protein breakdown, or to physiological stress
from accelerated rates of development [13,58].

Previous work on populations of A. aquaticus in southern
Sweden has proposed that visual predation by predators is an
important agent of selection, driving rapid evolution of cryptic
body coloration in A. aquaticus [33,34]. Specifically, in shallow
lakes, visual predators are thought to cause the evolution
of darker isopods in dark stands of reed, and lighter isopods
in light beds, of Chara tomentosa. However, the phenotypic
differences stemming from our diet manipulation caused
pigmentation differences as large as the phenotypic differen-
tiation observed in southern Sweden populations (figure 2d),
but in the absence of predators or background variation.
Additionally, we observe substantial variation in the slope and
intercept of family-level reaction norms (electronic supplemen-
tary material, figure S2) and a negative relationship between
developmental trajectories and survival (figures 3 and 4 and
table 1). This suggests an important link between factors affect-
ing development, and the phenotypic evolution of cryptic body
coloration. In the light of this work, we needmore direct tests of
the putative agents of selection driving phenotypic evolution
and their mechanisms (e.g. macrophytes as diet and shelter).

The fact that we found elevated pigmentation rates under
low elemental ratios and tryptophan supplement adds com-
plexity to our understanding about how visual predators
might mediate the evolution of pigmentation in A. aquaticus
(figure 2d). Certain macrophytes contain tryptophan in rela-
tively high levels [40], but the breakdown of proteins
containing tryptophan and their digestions may result in tox-
icity [37,49]. Ommochrome synthesis may be a mechanism
to bind excess tryptophan to pigment granules, while isopods
can take advantage of any high-quality biomass instead of
feeding selectively. Such ‘local excretion’ (i.e. the formation
of inert pigments from soluble tryptophan) might be adaptive
in arthropods to avoid toxicity of high-protein/low-elemental-
ratio diets [37]. Although not a direct test, our path analysis
provides some support for this hypothesis, as it shows
higher survival under high pigmentation rates and lower
growth rates (figure 3d). Such mechanisms do not exclude
the possibility for the evolution of cryptic pigmentation, but
we need a better understanding of sources of tryptophan
in natural diets, and the associated costs of acquiring and
using tryptophan to synthesize xanthommatin. Parasites,
although known to affect pigmentation in A. aquaticus [39],
unlikely played a role in our study because the isopods were
reared in filtered lake water and the diets were autoclaved
during their preparation.
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In our study, we explored the links between variation in
stoichiometric composition of diet, plasticity of developmental
rates and fitness of juveniles (figures 1, 2d and 4). Diet
stoichiometry and its potential mismatch with organisms’
nutritional requirements is increasingly acknowledged to
play a fundamental role in shaping life history and develop-
ment [12,24,59]. Our study illustrates the environmental
dependence of links between developmental rates and fitness
variation in a natural population of detritivores. Such exper-
iments, particularly if they are designed to test elemental
stoichiometry and nutritional geometry theory [6,12], could
be particularly insightful for consumers, including detritivores
[60–62], that are likely to encounter stoichiometric mismatches
through development [21–23]. Ultimately, such approaches
could improve our understanding about the underlying
sources and fitness consequences of developmental plasticity
in natural populations.
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